Законы независимого наследования признаков и чистоты гамет

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Законы независимого наследования признаков и чистоты гамет». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

В результате скрещивания гомозиготных организмов, аллели которых кодируют разные свойства признака, всё потомство будет иметь один фенотип.

Мендель многократно проводил исследования: использовал в опытах семена гороха (желтые и зеленые семена давали в потомстве только зеленые окрас), пурпурные и белые цветы (проросшие растения дали без исключений пурпурный цвет). Это натолкнуло Менделя на мысль о доминировании одних признаков над другими. Так появилось разделение аллелей на доминантные и рецессивные.

Гипотеза чистоты гамет. Законы наследования признаков Менделя

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных;цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого — с геном а.

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А, другая половина — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Второй закон Менделя — при моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Гетерозиготные особи — такие организмы, у которых копии генов в хромосомах представлены разными аллелями. В результате неполного или полного доминирования может проявляться как смесь этих признаков (АВ), так и один из них (Аb). Противоположностью гетерозиотности является гомозиготность, когда аллели гена в хромосомах идентичны.

Аллель — различные формы одного и того же гена, расположенные в одинаковых участках хромосом.

В соответствии со вторым законом Менделя, при скрещивании гетерозиготных особей происходит расщепление, когда часть потомства несет доминантный признак, а часть — рецессивный. Проявление более слабых характеристик свидетельствует о том, что они не подавляются полностью.

Так, расщепление при скрещивании двух особей типа Аb (где А — доминантный зеленый цвет, b — рецессивный желтый) покажет следующие результаты: АА, Аb, Аb и bb, которые в соответствии со вторым законом Менделя будут различаться:

  • По фенотипу — на 1 потомка с проявлением зеленого цвета (bb) будет приходится 3 желтых (АА, Аb, Аb).
  • По генотипу — на 1 особь типа АА, будет приходится 2 Аb и 1 bb.

Необходимо знать, что для выполнения второго закона Менделя необходимо соблюдение нескольких условий. К наиболее важным относятся:

  • Изучение большого числа потомков или скрещиваний.
  • Отсутствие избирательности при оплодотворении — гаметы с разными аллелями сливаются с одинаковой вероятностью.
  • Родители должны изначально относиться к чистым линиям, то есть гомозиготны по выбранному гену (AA и aa).
  • У разных генотипов должна быть одинаковая выживаемость.

Закон чистоты гамет подразумевает, что в эту клетку попадает только один аллель из пары, имеющейся у гена родителя.

Гаметы — репродуктивные клетки, имеющие одинарный набор хромосом и участвующие в половом размножении.

По гипотезе Менделя, понадобившейся ему для обоснования Закона расщепления, при слиянии мужской и женской гамет наследственные признаки не смешиваются, а передаются в изначальном виде (то есть остаются чистыми). Позднее было подтверждено, что от отцовского и материнского организмов зигота получает по половине хромосом.

Из всех закономерностей, установленных Менделем для наследственности, этот закон имеет наиболее общий характер, то есть, выполняется для самого широкого круга обстоятельств.

Передача наследственных признаков, законы Менделя

Третий закон Менделя — если особи отличаются двумя (и более) парами признаков, то при скрещивании эти особенности наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Согласно этому правилу, если гены находятся в разных хромосомах, дигетерозиота АаBb может образовать 4 типа гамет: АB, Аb, аB и аb (где А — желтые семена, а — зеленые, В — гладкие, b — морщинистые). Из 16-ти возможных комбинаций они образуют следующие фенотипы:

  • Желтые гладкие (ААВВ и др.) — 4 шт.
  • Желтые морщинистые (ААbb и др.) — 3 шт.
  • Зеленые гладкие (aaВВ и др.) — 3 шт.
  • Зеленые морщинистые (ааbb) — 1 шт.

Таким образом, из представленной схемы видно, что среди гибридов второго поколения расщепление идет в соотношении 4:3:3:1. Исследованиями биологов было установлено, что важным условием выполнения этого Закона является ситуация, при которой гены, отвечающие за конкретные признаки должны находиться в разных парах хромосом.

feniks.help — Скорая помощь студентам

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека, где А и В — доминантные гены, а 0 — рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 — вторую, ВВ и В0 — третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвёртая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».

Закон чистоты гамет — в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный закон носит наиболее общий характер (выполняется при наиболее широком круге условий).

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора — доминантный и рецессивный, но проявление признака определяет доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Гипотезу (теперь её называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Известно, что в каждой клетке организма в большинстве случаев имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы обычно содержат каждая по одному аллелю данного гена. Генетически «чистые» гаметы образуются следующим образом:

Закон независимого наследования (третий закон Менделя) — при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9/16 были с пурпурными цветами и зелёными горошинами, 3/16 с белыми цветами и зелёными горошинами, 3/16 с пурпурными цветами и желтыми горошинами, 1/16 с белыми цветами и желтыми горошинами.

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.
  5. Родительские организмы принадлежат к чистым линиям, то есть действительно гомозиготны по изучаемому гену (АА и аа).
  6. Признак действительно моногенный
  7. Признак не сцеплен с половыми хромосомами
  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).
  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Признак — любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой.

Альтернативные признаки — взаимоисключающие варианты одного и того же признака (пример: желтая и зеленая окраска семян гороха).

Доминирование — преобладание у гибрида признака одного из его родителей.

Доминантный признак — преобладающий признак, появляющийся в первом поколении потомства у гетерозиготных особей и доминантных гомозигот (см. ниже).

Рецессивный признак — признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков; проявляется в гомозиготном состоянии рецессивного гена.

Фенотип — совокупность всех внешних и внутренних признаков организма. Фенотип формируется при взаимодействии генотипа со средой обитания организма.

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b.

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b).

Генотип — совокупность всех генов данного организма.

Законы Менделя

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Третий закон Менделя (закон независимого наследования признаков) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя).

Законы Менделя выполняются лишь в среднем, при большом числе однотипных опытов. Они являются следствием случайного сочетания гамет, несущих разные гены, и статистического характера наследования, определяемого большим числом равновероятных встреч гамет.

❖ Дополнительные условия, при которых выполняются законы Менделя:
■ один ген должен контролировать только один признак, и один признак должен быть результатом действия только одного гена;
■ доминирование должно быть полным;
■ сцепление между генами должно отсутствовать;
■ равновероятное образование гамет и зигот разного типа;
■ равная вероятность выживания потомков с разными генотипами;
■ статистически большое количество скрещиваний.

❖ Значение законов Менделя:
■ эти законы носят универсальный характер и не зависят от систематического положения организма и сложности его строения;
■ с их помощью можно рассчитать число типов образующихся гамет и установить возможные варианты сочетания доминантных и рецессивных признаков у гибридов.

Закон независимого наследования признаков. Отношение 9:3:3:1, полученное при расщеплении второго гибридного по­коления в дигибридном скрещивании, позволило Менделю сфор­мулировать второй закон, или закон независимого наследования признаков: пары контрастирую» щих признаков наследуются при скрещивания независимо друг от друга, при этом каждая па­ра дает расщепление в отношении 3:1.

В самом деле, если рассмот­реть полученные результаты скрещивания, обращая внима­ние только на окраску семян, то окажется: растений с жел­тыми семенами F2 будет 12 (9 + 3), а с зелеными — 4 (3+ 1). Следовательно, отношение желтозерных растений к зеле-нозерным можно выразить как 12:4, или 3:1. А если подсчи­тывать расщепление в F2 толь­ко по признаку характера по­верхности семян, то получим 12 гладкосемянных растений на 4 морщинистосемянных, следовательно, тоже 3:1. При этом отношение 9:3:3:1 лег­ко получить, перемножив два предыдущих простых отноше­ния между собой: (3 жел.: 1 зел.) • (3 гл.: 1 морщ.) = 9 желт. гл.: 3 жел. морщ.: 3 зел. гл.: 1 зел. морщ. Это и будет означать, что каждая пара признаков насле­дуется как бы сама по себе, независимо от другой пары, а со­четание признака окраски с признаком поверхности семян соз­дается свободной комбинацией любого признака с любым.

Между поколениями связь осуществляется через половые клетки или гаметы. Следовательно, целесообразно предположить тот факт, что каждая гамета несет только один признак из пары. В этом случае при оплодотворении или слиянии двух гамет, каждая из которых содержит ген, отвечающий за развитие рецессивного признака, происходит фенотипическая реализация рецессивного признака. Если сливаются гаметы, несущие в себе гены, отвечающие за развитие рецессивного признака, то происходит фенотипическое проявление рецессивного признака.

Между 1856-1863 годами Мендель проводил эксперименты по гибридизации огородного гороха. В течение этого периода он выбрал некоторые отличительные черты гороха и провел перекрестное / искусственное опыление на линиях гороха, которые показали стабильную наследственность и подверглись непрерывному самоопылению. Такие линии гороха называются чистопородными линиями гороха.

Для своих опытов он выбрал горох:

  • Горох легко выращивать и ухаживать за ним.
  • Он естественно самоопыляется, но может также подвергаться перекрестному опылению.
  • Это однолетнее растение, поэтому за короткий промежуток времени можно изучить многие поколения.
  • В нем есть несколько контрастных видов.

Мендель провел 2 основных эксперимента по определению законов наследования. Эти эксперименты были:

  • Моногибридное скрещивание
  • Дигибридное скрещивание

Экспериментируя, Мендель обнаружил, что определенные факторы всегда стабильно передавались потомству. Эти факторы теперь называются генами, то есть гены можно назвать единицами наследования.

В этом эксперименте Мендель взял два растения гороха противоположных признаков (одно короткое и одно высокое) и скрестил их. Он обнаружил, что потомство первого поколения было высоким, и назвал его потомством F1. Затем он скрестил потомство F1 и получил как высокие, так и короткие растения в соотношении 3: 1.

Мендель даже провел этот эксперимент с другими контрастирующими признаками, такими как зеленый горошек против желтого горошка, круглый или морщинистый и т. д. Во всех случаях он обнаружил, что результаты были одинаковыми. Исходя из этого, он сформулировал законы сегрегации и доминирования.

В эксперименте с дигибридным скрещиванием Мендель рассмотрел два признака, каждый из которых имеет два аллеля. Он скрестил морщинистые зеленые семена и округло-желтые семена и заметил, что все потомство первого поколения (потомство F1) было округло-желтым. Это означало, что доминирующими чертами были круглая форма и желтый цвет.

Затем он самоопылял потомство F1 и получил 4 разных признака: морщинисто-желтые, округло-желтые, морщинисто-зеленые семена и округло-зеленые семена в соотношении 9: 3: 3: 1.

Закон расщепления гласит, что во время производства гамет две копии каждого наследственного фактора разделяются, так что потомство получает по одному фактору от каждого родителя. Другими словами, пары аллелей (альтернативная форма гена) разделяются во время формирования гамет и повторно объединяются случайным образом во время оплодотворения. Этот закон также известен как третий закон Менделя о наследовании.

Также известный как второй закон наследования Менделя, закон независимого распределения утверждает, что пара признаков отделяется независимо от другой пары во время формирования гамет. Поскольку индивидуальные факторы наследственности сортируются независимо друг от друга, разные черты имеют равные возможности встречаться вместе.

Закон расщепления (второй закон Менделя) — при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Законы Менделя: первый, второй и третий закон Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы — гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой — от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:

  1. Изучается большое число скрещиваний (большое число потомков).
  2. Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
  3. Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
  4. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.
  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).
  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.
  1. 1234 Иванов , 2007, с. 9—10

Закон (правило) чистоты гамет (Г. Мендель , 1865 г.)

  • Естествознание
    • Физика
    • Математика
    • Химия
    • Биология
    • Экология
  • Обществознание
    • Обществознание — как наука
    • Иностранные языки
    • История
    • Психология и педагогика
    • Русский язык и литература
    • Культурология
    • Экономика
    • Менеджмент
    • Логистика
    • Статистика
    • Философия
    • Бухгалтерский учет
  • Технические науки
    • Черчение и инженерная графика
    • Материаловедение
    • Сварка
    • Электротехника и электроника
    • АСУТП и КИПИА
    • Технологии
    • Теоретическая механика и сопромат
    • САПР
    • Метрология, стандартизация и сертификация
    • Геодезия и маркшейдерия
  • Программирование и сеть
    • Информатика
    • Языки программирования
    • Алгоритмы и структуры данных
    • СУБД
    • Web разработки и технологии
    • Архитектура ЭВМ и основы ОС
    • Системное администрирование
    • Создание программ и приложений
    • Создание сайтов
    • Тестирование ПО
    • Теория информации и кодирования
    • Функциональное и логическое программирование

    Моногибридным называется такое скрещивание, в результате которого изучается проявление одного признака. При этом прослеживаются наследственные закономерности пары вариантов по одному признаку. Развитию данных проявлений способствуют пары аллельных генов.

    К примеру, признак «окраски венчика цветка» гороха может проявляться в двух вариациях: белый и красный. Другие признаки, присущие данным организмам, во внимание не берутся.

    Законы Г. Менделя раскрыли дискретную, корпускулярную природу наследственности. Они имеют универсальный характер и исполняются в случае полового размножения диплоидних организмов. Но считать их абсолютно универсальными было бы неверно. Законы классической генетики имеют определенные ограничения. Для выявления законов Г. Менделя необходимы:

    • гомозиготность производных форм;
    • образование у гибридов гамет всех возможных типов в соответствующих соотношениях, что обеспечивается правильным течением мейоза;
    • одинаковая жизнеспособность гамет всех типов, равная вероятность встречи любых типов гамет при оплодотворении;
    • одинаковая жизнеспособность всех типов зигот.

    Нарушение этих условий может привести либо к отсутствию расщепления во втором поколении гибридов, или к искажению соотношения различных генотипов и фенотипов. Например, наследование особой группы крови у человека (наследование резус-фактора) подчиняется законам Менделя. Казалось бы, 74% людей должны быть резус-положительными, а 25% – резус-отрицательными. Но на самом деле такое соотношение составляет 85% к 15%. Причина заключается в наличии резус-конфликта между матерью и плодом.

    Обратите внимание, что все законы Менделя справедливы лишь в случае полного доминирования. Когда доминирование будет неполным, то гетерозиготная форма будет промежуточным видом и потребности в рассматриваемом скрещивании не будет. Еще одним ограничением является случай, когда какие-то признаки наследуются вместе. В этом случае будет нарушаться закон независимого наследования. Существует группа признаков, которая кодируется большим количеством генов. Это так называемая полигенная наследственность. Понятно, что в этом случае будет нарушаться закон чистоты гамет.

    Несмотря на существование отдельных ограничений, законы наследственности, открытые Г. Менделем, остаются основными закономерностями природы.

    Три закона Менделя — основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел — генетику.

    С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика — это один из самых интересных и перспективных разделов биологии.

    Грегор Мендель установил закономерности наследования, а не наследственности. Признаки, передающиеся от поколения к поколению, он назвал наследственными зачатками, так как о гене тогда еще не существовало понятия.

    Закономерности наследственности

    Формулировка закона

    Схема скрещивания

    Первый закон Менделя. Правило единообразия первого поколения или закон доминирования.

    Грегор Мендель, 1865г.

    Между поколениями связь осуществляется через половые клетки или гаметы. Следовательно, целесообразно предположить тот факт, что каждая гамета несет только один признак из пары.

    В этом случае при оплодотворении или слиянии двух гамет, каждая из которых содержит ген, отвечающий за развитие рецессивного признака, происходит фенотипическая реализация рецессивного признака.

    Если сливаются гаметы, несущие в себе гены, отвечающие за развитие рецессивного признака, то происходит фенотипическое проявление рецессивного признака.

    При этом, следует сделать вывод о том, что появление у гибридов второго поколения рецессивного признака от одного из родителей может произойти только при соблюдении двух условий:

    • сохранение у гибридов всех наследственных факторов в неизменном виде;
    • наличие в половых клетках только одного наследственного фактора из пары аллелей.

    Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил генетической чистотой гамет.

    Почему этот закон может быть реализован на практике? Известно, что каждая клетка организма несет постоянный диплоидный набор хромосом и две гомологичные хромосомы содержат одинаковые аллели одного гена.

    В связи с этим образование генетически «чистых» гамет будет происходить следующим образом:

    • слияние мужских и женских гамет дает гибрида, имеющего диплоидный хромосомный набор;
    • половину хромосом зигота получает от отцовского генотипа, другую половину – от материнского;
    • в ходе гаметогенеза у гибрида гомологичные хромосомы в первом делении мейоза попадают в разные клетки;
    • образуется два сорта гамет по указанной аллельной паре.

    Расщепление признаков в потомстве может происходить только при соблюдении нескольких условий: скрещивание должно быть многократным, чтобы получить большое количество потомков. Генотип родителей должен быть исключительно гетерозиготным. Гаметы должны свободно скрещиваться между собой. Зиготы должны иметь способность выживать в равной степени.

    В ходе оплодотворения случайным образом могут встретится одинаковые или разные гаметы, несущие те или иные аллели. По статистике при наличии большого количества гамет в потомстве четверть генотипов будет гомозиготной доминантной, а половина гетерозиготной, а еще одна четверть станет гомозиготной рецессивной. В итоге установится соотношение 1АА:2Аа:1аа.

    Если рассматривать полученное расщепление с точки зрения фенотипа, то можно отметить, что будет наблюдаться соотношение 3:1 по доминантному и рецессивному признаку соответственно. Такое расщепление происходит на постоянной основе при соблюдении всех вышеописанных условий.

    Первый закон Менделя – закон доминирования (закон единообразия гибридов первого поколения): «При скрещивании двух гомозиготных организмов, отличающихся по альтернативным вариантам одного и того же признака, все потомство от такого скрещивания окажется единообразным и будет нести признак одного из родителей».

    Первый закон Менделя

    Второй закон Менделя – закон расщепления можно сформулировать следующим образом: «При скрещивании двух потомков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1».

    Второй закон Менделя

    Закон чистоты гамет. Появление во втором поколении (F2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде;

    2) если половые клетки содержат только один наследственный фактор из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: «При образовании половых клеток в каждую гамету попадает только один ген из каждой аллельной пары».

    Цитологическим обоснованием закона чистоты гамет, а следовательно и всех закономерностей наследования признаков, является поведение хромосом в мейозе, в результате которого в клетках оказывается лишь одна хромосома из каждой гомологичной пары.

    Третий закон Менделя – закон независимого комбинирования: «При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях».

    При цитологическом исследовании используется методика микроскопии, которая позволяет специалистам на основе зрительного анализа получить необходимы данные.

    Данный мазок на цитологию дает представление о микрофлоре половых органов, то есть показатели эритроцитов и лейкоцитов, их качественные и количественные характеристики, а также изменение внешнего вида плоских и цилиндрических клеток.

    Расшифровка мазка на цитологию считается отрицательной, если норма соблюдена во всех показателях. При отклонении показателей от нормы врач диагностирует злокачественное заболевание и предраковое состояние.

    Однако, существует ситуация, когда необходим повторный анализ на цитологию. Если расшифровка мазка на онкоцитологию показала, что цилиндрический или плоский эпителий видоизменяется, специалистам необходимо получить дополнительные данные с течением времени.

    Повторный мазок на цитологию необходим через 2-3 месяца. Таким образом, исключается ложноположительный результат на онкоцитологию. Помимо цитологического исследования, пациенту назначаются дополнительные исследования, чтобы составить полную картину о развитии патологии.

    Проводят процедуру во время осмотра у гинеколога. Мазок берут с необходимого места, например, в полости шейки матки со всех стенок, а также при необходимости с поверхности вульвы или влагалища.

    Клетки матки имеют свойство постоянно слушиваться и заменяются новыми, поэтому они проходят до просвета шейки матки, а также попадают и во влагалище.

    Цитологическое исследование проводится относительно просто не грозит осложнением. Например, забор биоматериала путем биопсии будет болезненным и проводится при использовании дополнительного оборудования и после него могут возникнуть осложнения.


    Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *