Мендель сформулировал закон сцепленного наследования

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Мендель сформулировал закон сцепленного наследования». Также Вы можете бесплатно проконсультироваться у юристов онлайн прямо на сайте.

Содержание
5. Передача наследственных признаков, законы Менделя

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Законы Менделя

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар — полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных;цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 — гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Законы Г.Менделя. Сцепленное наследование. Нарушение сцепления

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого — с геном а.

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А, другая половина — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Второй закон Менделя — при моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Гетерозиготные особи — такие организмы, у которых копии генов в хромосомах представлены разными аллелями. В результате неполного или полного доминирования может проявляться как смесь этих признаков (АВ), так и один из них (Аb). Противоположностью гетерозиотности является гомозиготность, когда аллели гена в хромосомах идентичны.

Аллель — различные формы одного и того же гена, расположенные в одинаковых участках хромосом.

В соответствии со вторым законом Менделя, при скрещивании гетерозиготных особей происходит расщепление, когда часть потомства несет доминантный признак, а часть — рецессивный. Проявление более слабых характеристик свидетельствует о том, что они не подавляются полностью.

Так, расщепление при скрещивании двух особей типа Аb (где А — доминантный зеленый цвет, b — рецессивный желтый) покажет следующие результаты: АА, Аb, Аb и bb, которые в соответствии со вторым законом Менделя будут различаться:

  • По фенотипу — на 1 потомка с проявлением зеленого цвета (bb) будет приходится 3 желтых (АА, Аb, Аb).
  • По генотипу — на 1 особь типа АА, будет приходится 2 Аb и 1 bb.

Необходимо знать, что для выполнения второго закона Менделя необходимо соблюдение нескольких условий. К наиболее важным относятся:

  • Изучение большого числа потомков или скрещиваний.
  • Отсутствие избирательности при оплодотворении — гаметы с разными аллелями сливаются с одинаковой вероятностью.
  • Родители должны изначально относиться к чистым линиям, то есть гомозиготны по выбранному гену (AA и aa).
  • У разных генотипов должна быть одинаковая выживаемость.

Закон чистоты гамет подразумевает, что в эту клетку попадает только один аллель из пары, имеющейся у гена родителя.

Гаметы — репродуктивные клетки, имеющие одинарный набор хромосом и участвующие в половом размножении.

По гипотезе Менделя, понадобившейся ему для обоснования Закона расщепления, при слиянии мужской и женской гамет наследственные признаки не смешиваются, а передаются в изначальном виде (то есть остаются чистыми). Позднее было подтверждено, что от отцовского и материнского организмов зигота получает по половине хромосом.

Из всех закономерностей, установленных Менделем для наследственности, этот закон имеет наиболее общий характер, то есть, выполняется для самого широкого круга обстоятельств.

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека, где А и В — доминантные гены, а 0 — рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 — вторую, ВВ и В0 — третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвёртая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».

Закон чистоты гамет — в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный закон носит наиболее общий характер (выполняется при наиболее широком круге условий).

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора — доминантный и рецессивный, но проявление признака определяет доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Гипотезу (теперь её называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Известно, что в каждой клетке организма в большинстве случаев имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы обычно содержат каждая по одному аллелю данного гена. Генетически «чистые» гаметы образуются следующим образом:

Закон независимого наследования (третий закон Менделя) — при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9/16 были с пурпурными цветами и зелёными горошинами, 3/16 с белыми цветами и зелёными горошинами, 3/16 с пурпурными цветами и желтыми горошинами, 1/16 с белыми цветами и желтыми горошинами.

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом (нуклеопротеидных структур в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи) гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Генетические опыты Менделя. Моногибридное скрещивание

  1. Все условия, необходимые для выполнения закона расщепления.
  2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).
  1. Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Для облегчения учета результатов эксперимента Грегор Мендель избрал растения с четко отличающимися признаками. Это были цвет и форма семян.

Для начала он получил семена «чистых линий» растений. Эти семена при дальнейшем посеве и в результате самоопыления не давали расщепления признаков.

При скрещивании разных сортов гороха — с пурпурными цветками и с белыми цветками, в первом поколении гибридов Мендель получал все растения с пурпурными цветками. Аналогичными были результаты, когда ученый брал растения гороха с желтыми и зелеными семенами или семенами гладкой и морщинистой формы.

По результатам этих опытов Грегор Мендель вывел закон единообразия гибридов первого поколения, который мы знаем, как «первый закон Менделя». Сегодня он звучит так:

«При скрещивании двух гомозиготных организмов. которые относятся к чистым линиям и отличаются друг от друга по одной паре альтернативных проявлений определенного признака, всё первое поколение гибридов (F1) окажется полностью единообразным и будет нести проявление признака только одного из родителей».

Данный закон еще называют законом доминирования признаков. Он означает, что доминирующий признак появляется в фенотипе, подавляя рецессивный.

Не возвращаясь к расхождениям в интерпретации экспериментов Менделя между их автором и современными генетиками, можно вкратце напомнить, что путем скрещивания
гладкого горошка и морщинистого горошка Мендель получил гладкий гибридный горошек (который в точности соответствовал принципу однородности гибридов первого поколения), а также путем скрещивания между семенами этого горошка он получил 3/4 гладкого гороха и 1/4 морщинистого горошка (рисунок 1).

Между 1856-1863 годами Мендель проводил эксперименты по гибридизации огородного гороха. В течение этого периода он выбрал некоторые отличительные черты гороха и провел перекрестное / искусственное опыление на линиях гороха, которые показали стабильную наследственность и подверглись непрерывному самоопылению. Такие линии гороха называются чистопородными линиями гороха.

Для своих опытов он выбрал горох:

  • Горох легко выращивать и ухаживать за ним.
  • Он естественно самоопыляется, но может также подвергаться перекрестному опылению.
  • Это однолетнее растение, поэтому за короткий промежуток времени можно изучить многие поколения.
  • В нем есть несколько контрастных видов.

Мендель провел 2 основных эксперимента по определению законов наследования. Эти эксперименты были:

  • Моногибридное скрещивание
  • Дигибридное скрещивание

Экспериментируя, Мендель обнаружил, что определенные факторы всегда стабильно передавались потомству. Эти факторы теперь называются генами, то есть гены можно назвать единицами наследования.

Законы Менделя: первый, второй и третий закон Менделя

В этом эксперименте Мендель взял два растения гороха противоположных признаков (одно короткое и одно высокое) и скрестил их. Он обнаружил, что потомство первого поколения было высоким, и назвал его потомством F1. Затем он скрестил потомство F1 и получил как высокие, так и короткие растения в соотношении 3: 1.

Мендель даже провел этот эксперимент с другими контрастирующими признаками, такими как зеленый горошек против желтого горошка, круглый или морщинистый и т. д. Во всех случаях он обнаружил, что результаты были одинаковыми. Исходя из этого, он сформулировал законы сегрегации и доминирования.

В эксперименте с дигибридным скрещиванием Мендель рассмотрел два признака, каждый из которых имеет два аллеля. Он скрестил морщинистые зеленые семена и округло-желтые семена и заметил, что все потомство первого поколения (потомство F1) было округло-желтым. Это означало, что доминирующими чертами были круглая форма и желтый цвет.

Затем он самоопылял потомство F1 и получил 4 разных признака: морщинисто-желтые, округло-желтые, морщинисто-зеленые семена и округло-зеленые семена в соотношении 9: 3: 3: 1.

  • Генетический состав растения известен как генотип. Напротив, внешний вид растения известен как фенотип.
  • Гены передаются от родителей к потомству парами, известными как аллели.
  • Во время гаметогенеза, когда хромосомы делятся вдвое, существует 50% -ная вероятность слияния одного из двух аллелей с другим родителем.
  • Когда аллели одинаковы, они известны как гомозиготные аллели, а когда аллели различны, они известны как гетерозиготные аллели.

Закон расщепления гласит, что во время производства гамет две копии каждого наследственного фактора разделяются, так что потомство получает по одному фактору от каждого родителя. Другими словами, пары аллелей (альтернативная форма гена) разделяются во время формирования гамет и повторно объединяются случайным образом во время оплодотворения. Этот закон также известен как третий закон Менделя о наследовании.

Передача наследственных признаков, законы Менделя

Наследственность – это способность организма обеспечивать материальную и функциональную преемственность в ряду поколений, а также характерный тип индивидуального развития.

Гибридологический метод – это метод скрещиваний чистых линий для получения гибридов, которые затем скрещиваются между собой. Характер наследования признаков анализируется количественно от каждой родительской пары в каждом поколении. В рамках гибридологического метода Мендель сформулировал, что скрещивание двух генетически различных организмов называется гибридизацией, потомство от такого скрещивания – гибридным или гибридом. Расщепление, касающееся одной пары альтернативных признаков, т.е. одного локуса называется моногибридным; от 2х пар признаков – дигибридным; от более 2х пар аллелей – полигибридным.

Первый закон Менделязакон единообразия гибридов первого поколения.

При скрещивании чистых линий, различающихся по одной паре альтернативных признаков, у гибридов первого поколения проявляются признаки одного из родителей. Второй признак как бы исчезает, не проявляется. Явление преобладания признака одного из родителя Мендель назвал доминирование, а признак, проявляющийся у гибридов первого поколения и подавляющий развитие второго признака, — доминантным. Признак, подавленный доминантным и не проявившийся у гибридов первого поколения, получил название рецессивного. Согласно данному закону у гибридов первого поколения проявляется доминантный признак и не проявляется рецессивный признак, если доминирование полное. Если доминирование неполное, то проявление признака носит промежуточный характер, а расщепления по генотипу и фенотипу совпадают.

Второй закон Менделя – закон расщепления,который гласит, что при скрещивании гибридов первого поколения в потомстве происходит расщепление по альтернативным признакам в соотношении 3:1 соответственно особей с доминантным и рецессивным фенотипом.

Цитологической основой моногибридного скрещивания является поведение хромосом в мейозе и при оплодотворении.

Третий закон Менделя – закон независимого наследования контролируемых неаллельными генами признаков.Анализ расщепления при дигибридном скрещивании с помощью решетки Пеннета показывает, что каждый из признаков наследуется независимо от другого, т.к. расщепление по фенотипу для каждого из них – 3:1, как при моногибридном скрещивании.

Основываясь на законах Менделя, выделяют следующие типы моногенного наследования: аутосомно-доминантный, аутосомно-рецессивный, Х-сцепленный доминантный, Х-сцепленный рецессивный и Y-сцепленный.

Изменчивость – это способность организмов приобретать новые свойства в ходе онтогенеза. Выделяют изменчивость наследственную, или генотипическую, и ненаследственную, или фенотипическую.

Фенотипическая изменчивость возникает под воздействием факторов внешней среды и присуща большим группам индивидов. Она обратима, если фактор среды перестает действовать. Разновидностями ненаследственной изменчивости являются онтогенетическая и модификационная.

Онтогенетическая изменчивость заключается в том, что фенотип организма меняется на протяжении всей жизни, в то время как генотипа не меняется, а происходит лишь переключение активности генов.

Модификационная изменчивость возникает под влиянием средовых факторов, однако ее размах определяется генотипом, т.е. генетически обусловленной нормой реакции.

Наследственная изменчивость связана с изменениями генотипа и может наследоваться как комбинативная и мутационная.

Комбинативная изменчивость связана с перекомбинацией родительских генов и может являться причиной моногенной и мультифакториальной патологии (например, шизофрении, эпилепсии).

Мутационная изменчивость возникает в связи с мутациями, нарушающими генетический материал внезапно и скачкообразно. По своему действию мутации м.б. полезными, вредными, нейтральными, по способу возникновения – спонтанные и индуцированные. Спонтанные мутации явление редкое, а индуцированные возникают под воздействием различных мутагенов: физических (облучение), химических (лекарственные препараты), биологических (бактерий и вирусов).

В зависимости от типа клеток выделяют соматические (они не влияют на потомство, но могут приводить к новообразованиям) и гаметические (они приводят к порокам развития плода) мутации. Возможны также зиготические мутации, которые приводят к возникновению мозаицизма, когда в одних клетках организма нормальный кариотип, а в других – аномальный.

По характеру изменений выделяют генные, хромосомные и геномные мутации.

2. Методы и ход работы Менделя

3. Закон единообразия гибридов первого поколения

3.1 Кодоминирование и неполное доминирование

4. Закон расщепления признаков

4.1 Определение

4.2 Объяснение

5. Закон независимого наследования признаков

5.1 Определение

5.2 Объяснение

6. Основные положения теории наследственности Менделя

7.1 Условия выполнения закона расщепления при моногибридном скрещивании

7.2 Условия выполнения закона независимого наследования

7.3 Условия выполнения закона чистоты гамет

8. Теория наследственности

8.1 Формирование хромосомной теории

8.2 Генетика пола

8.3 Определение пола

8.4 Наследование признаков, сцепленных с полом

8.6 Понятие о генетической карте

8.7 Основные положения хромосомной теории наследственности

Источники

1. История

Законы Менделя — набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона, хотя «первый закон» не был открыт Менделем, а «гипотеза чистоты гамет» из всех открытых им закономерностей имеет наиболее общее значение и в наибольшей степени заслуживает названия «закона».

Наследование признаков по законам менделя называется 2021 год

2. Методы и ход работы Менделя

Мендель изучал, как наследуются отдельные признаки.

Мендель выбрал из всех признаков только альтернативные — такие, которые имели у его сортов два четко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило четко установить общие закономерности наследования.

В начале XIX века Дж. Госс, экспериментируя с горохом , показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении [1].

О. Саржэ, проводя опыты на дынях сравнивал их по отдельным признакам(мякоть, кожура и т.д.) также установил отсутствие смешения признаков, которые не исчезали у потомков, а только перераспределялись среди них. Ш. Ноден, скрещивая различные виды дурмана, обнаружил преобладание признаков дурмана Datula tatula над Datura stramonium, причём это не зависело от того, какое растение материнское, а какое — отцовское[1].

Таким образом к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении(все гибриды первого поколения похожи друг на друга), расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя[1].

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Закон единообразия гибридов первого поколения (первый закон Менделя) — при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека, где А и В — доминантные гены, а 0 — рецессивный. По этой системе генотип 00 определяет первую группу крови, АА и А0 — вторую, ВВ и В0 — третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвёртая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы — гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой — от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Этот закон был установлен в ходе первого этапа эксперимента. Были взяты два гороха с разными особенностями – разным цветом семян. Они были обозначены как родительские растения или «РР». Одни были желтые, другие зеленые. Для чистоты эксперимента проводилось искусственное опыление.

Результатом стало появление гороха первого поколения «F1». У таких растений семена всегда были желтыми. Это значит, что второе поколение представляло собой один определенный тип и имело признаки только одного из растений первого поколения (желтый цвет в данном случае). Такие признаки называются доминантными.

Таким образом у всего второго поколения проявилось единообразие, что и дало название закону.

Для третьего опыта Мендель использовал растения гороха с несколькими различающимися признаками: цвет семян и их гладкость. Один вид имел семена гладкие желтые, а второй – зеленые и ребристые.

В первом поколении растение приобрело следующие признаки: желтый цвет и гладкость семян.

Во втором поколении уже наблюдалось расщепление:

  • желтый цвет и гладкие семена;

  • желтый цвет и ребристые семена;

  • зеленый цвет и гладкие семена;

  • зеленый цвет и ребристые семена.

Получившийся результат говорит о том, что передача и наследование двух разных признаков не зависит друг от друга. А соответственно за гладкость отвечает другой ген, у которого своей набор аллелей. Гладкие семена обуславливаются сочетанием аллелей «BB», «Bb», «bB».

В ходе экспериментов Мендель смог установить, что любой ген может содержать рецессивную и(или) доминантную части. Она подавляет рецессивную. Обе эти части впоследствии были названы аллелями. При соединении растений с разными генами, их аллели будут передаваться независимо друг от друга, что начнет проявляться во втором поколении. Если в первом поколении растение приобретает только доминантные признаки, то во втором начнут проявляться и рецессивные. На этом и основываются три закона Менделя и это позволяет ученым-генетикам предугадывать поведение организма при размножении.

А1. Доминантный аллель – это

1) пара одинаковых по проявлению генов

2) один из двух аллельных генов

3) ген, подавляющий действие другого гена

4) подавляемый ген

А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о

1) нескольких признаках организма

2) одном признаке организма

3) нескольких белках

4) молекуле т-РНК

А3. Если признак не проявляется у гибридов первого поколения, то он называется

1) альтернативным

2) доминантным

3) не полностью доминирующим

4) рецессивным

А4. Аллельные гены расположены в

1) идентичных участках гомологичных хромосом

2) разных участках гомологичных хромосом

3) идентичных участках негомологичных хромосом

4) разных участках негомологичных хромосом

А5. Какая запись отражает дигетерозиготный организм:

1) ААВВ

2) АаВв

3) АаВвСс

4) ааВВсс

А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов – над шаровидной

1) белая, шаровидная

2) желтая, шаровидная

3) желтая дисковидная

4) белая, дисковидная

А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком.

1) все ВВ

2) все Вв

3) 50% ВВ и 50% Вв

4) 75% ВВ и 25% Вв

А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети?

1) ААвв

2) АаВв

3) ааВВ

4) ААвВ

А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам?

1) 25%

2) 75%

3) 12,5%

4) 50%

А10. Второй закон Менделя – это закон, описывающий процесс

1) сцепления генов

2) взаимного влияния генов

3) расщепления признаков

4) независимого распределения гамет

А11. Сколько типов гамет образует организм с генотипом ААВвСс

1) один

2) два

3) три

4) четыре

А1. Сколько пар хромосом отвечает за наследование пола у собак, если диплоидный набор у них равен 78?

1) одна

2) две

3) тридцать шесть

4) восемнадцать

А2. Закономерности сцепленного наследования относятся к генам, расположенным в

1) разных не гомологичных хромосомах

2) гомологичных хромосомах

3) в одной хромосоме

4) негомологичных хромосомах

А3. Мужчина дальтоник женился на женщине с нормальным зрением, носительнице гена дальтонизма. Ребенка с каким генотипом у них быть не может?

1) ХdХ

2) XX

3) ХdХd

4) ХУ

А4. Чему равно число групп сцепления генов, если известно, что диплоидный набор хромосом организма равен 36?

1) 72

2) 36

3) 18

4) 9

А5. Частота кроссинговера между генами К и С – 12%, между генами В и С – 18%, между генами К и В – 24%. Каков вероятный порядок расположения генов в хромосоме, если известно, что они сцеплены.

1) К-С-В

2) К-В-С

3) С-В-К

4) В-К-С

А6. Каким будет расщепление по фенотипу в потомстве, полученном от скрещивания черных (А) мохнатых (В) морских свинок, гетерозиготных по двум признакам, сцепленным в одной хромосоме?

1) 1 : 1

2) 2 : 1

3) 3 : 1

4) 9 : 3 : 3 : 1

А7. У супружеской пары родился сын гемофилик. Он вырос и решил жениться на здоровой по данному признаку женщине, не несущей гена гемофилии. Каковы возможные фенотипы будущих детей этой супружеской пары, если ген сцеплен с Х-хромосомой?

Сцепленное наследование признаков. Хромосомная теория наследственности

Основная статья: История генетики

Принципы менделевской наследования были названы в честь и впервые выведены Грегором Иоганном Менделем , моравским монахом девятнадцатого века, который сформулировал свои идеи после проведения простых экспериментов по гибридизации гороха ( Pisum sativum ), который он посадил в саду своего монастыря. Между 1856 и 1863 годами Мендель вырастил и испытал около 5000 растений гороха. Из этих экспериментов он сделал два обобщения, которые позже стали известны как принципы наследственности Менделя или менделевское наследование . Он описал свои эксперименты в статье, состоящей из двух частей, Versuche über Pflanzen-Hybriden ( Эксперименты по гибридизации растений ), которую он представил Обществу естествознания Брно 8 февраля и 8 марта 1865 года и которая была опубликована в 1866 году.

Результаты Менделя в значительной степени игнорировались подавляющим большинством. Хотя они не были полностью неизвестны биологам того времени, они не рассматривались как общеприменимые даже самим Менделем, который считал, что они применимы только к определенным категориям видов или признаков. Основной блок для понимания их значения было значением , придаваемые биологами 19-го века до видимого смешения из многих наследственных признаков в общем виде потомства, сейчас известно, что из — за несколько генами взаимодействий , в отличии от органа-специфического двоичные символы изучал Мендель. Однако в 1900 году его работа была «заново открыта» тремя европейскими учеными, Гуго де Фризом , Карлом Корренсом и Эрихом фон Чермаком . Точная природа «повторного открытия» обсуждалась: Де Фрис первым опубликовал по этому вопросу, упомянув Менделя в сноске, в то время как Корренс указал на приоритет Менделя после того, как прочитал статью Де Фриза и понял, что он сам не имел приоритета. . Де Фриз, возможно, не признал правдиво, сколько его знаний о законах было получено из его собственных работ, а сколько — только после прочтения статьи Менделя. Позже ученые обвиняли фон Чермака в том, что он вообще не понимал результатов.

Тем не менее, «повторное открытие» сделало менделизм важной, но противоречивой теорией. Самым активным его пропагандистом в Европе был Уильям Бейтсон , придумавший термины « генетика » и « аллель » для описания многих его принципов. Модель наследственности оспаривалась другими биологами, потому что она подразумевала, что наследственность была прерывистой, в отличие от очевидной непрерывной изменчивости, наблюдаемой для многих признаков. Многие биологи также отвергли эту теорию, потому что не были уверены, что она применима ко всем видам. Однако более поздняя работа биологов и статистиков, таких как Рональд Фишер, показала, что если несколько менделевских факторов были задействованы в выражении индивидуального признака, они могли бы дать различные наблюдаемые результаты, и таким образом показали, что менделевская генетика совместима с естественным отбором . Томас Хант Морган и его помощники позже интегрировали теоретическую модель Менделя с хромосомной теорией наследования, в которой хромосомы клеток, как считалось, содержат фактический наследственный материал, и создали то, что сейчас известно как классическая генетика , очень успешный фундамент, который в конечном итоге закрепил Место Менделя в истории.

Менделирующая черта — это черта, которая контролируется одним локусом в паттерне наследования. В таких случаях мутация в одном гене может вызвать заболевание, которое передается по наследству в соответствии с принципами Менделя. Доминирующие заболевания проявляются у гетерозиготных особей. Иногда рецессивные наследуются генетическими носителями незаметно . Примеры включают серповидно-клеточную анемию , болезнь Тея – Сакса , муковисцидоз и пигментную ксеродерму . Заболевание, контролируемое одним геном, контрастирует с многофакторным заболеванием, таким как болезнь сердца, на которую влияют несколько локусов (и окружающей среды), а также заболевания, унаследованные неменделирующим образом.

Основная статья: неменделирующее наследование

После исследований и открытий Менделя делались все новые и новые открытия в области генетики. Сам Мендель сказал, что обнаруженные им закономерности применимы только к организмам и характеристикам, которые он сознательно выбрал для своих экспериментов. Мендель объяснил наследование дискретными факторами — генами, — которые передаются от поколения к поколению в соответствии с правилами вероятности. Законы Менделя действительны для всех организмов, размножающихся половым путем, включая горох и людей. Однако законы Менделя не позволяют объяснить некоторые закономерности генетической наследственности. Для большинства организмов, размножающихся половым путем, случаи, когда законы Менделя могут строго учитывать все модели наследования, относительно редки. Часто модели наследования более сложные.

В случаях кодоминирования фенотипы, производимые обоими аллелями, четко выражены. Мендель выбрал генетические признаки растений, которые определяются только двумя аллелями, такими как «А» и «а». В природе гены часто существуют в нескольких различных формах с множеством аллелей . Более того, многие черты возникают в результате взаимодействия нескольких генов. Признаки, контролируемые двумя или более генами, считаются полигенными .

  • Лекции
    • Анатомия
    • Строение и функции клетки
    • Матричные процессы
    • Регуляция действия гена
    • Генетика
    • Эволюция
    • Экология
    • Ботаника
    • Зоология
    • Биохимия
  • Презентации
  • Учебные материалы
  • Варианты тестов
  • Помощь online
  • СНО


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *